Category Archives: Data Science

How To Predict ICU Mortality with Digital Health Data, DL4J, Apache Spark and Cloudera

Categories: CDH Data Science Spark

Modeling EHR Data in Healthcare

In this case study, we take a look at modeling electronic health record (EHR) data with deep learning and Deeplearning4j (DL4J). We draw inspiration from recent research showing that carefully designed neural network architectures can learn effectively from the complex, messy data collected in EHRs. Specifically, we describe how to train an  long short-term memory recurrent neural network (LSTM RNN) to predict in-hospital mortality among patients hospitalized in the intensive care unit (ICU).

Read more

Customizing Docker Images in Cloudera Data Science Workbench

Categories: Altus CDH Cloud Data Science How-to Tools

This article shows how to build and publish a customized Docker image for usage as an engine in Cloudera Data Science Workbench. Such an image or engine customization gives you the benefit of being able to work with your favorite tool chain inside the web based application.

Motivation:

Cloudera Data Science Workbench (CDSW) enables data scientists to use their favorite tools such as R, Python, or Scala based libraries out of the box in an isolated secure sandbox environment.

Read more

Deep Learning with Intel’s BigDL and Apache Spark

Categories: CDH Data Science Hadoop Spark

Cloudera recently published a blog post on how to use Deeplearning4J (DL4J) along with Apache Hadoop and Apache Spark to get state-of-the-art results on an image recognition task. Continuing on a similar stream of work, in this post we discuss a viable alternative that is specifically designed to be used with Spark, and data available in Spark and Hadoop clusters via a Scala or Python API.

The Deep Learning landscape is still evolving.

Read more

implyr: R Interface for Apache Impala

Categories: CDH Data Science HBase HDFS Impala Kudu Tools

New R package implyr enables R users to query Impala using dplyr.

Apache Impala (incubating) enables low-latency interactive SQL queries on data stored in HDFS, Amazon S3, Apache Kudu, and Apache HBase. With the availability of the R package implyr on CRAN and GitHub, it’s now possible to query Impala from R using the popular package dplyr.

dplyr provides a grammar of data manipulation,

Read more