Category Archives: Use Case

Next Generation Data Warehousing at Santander UK

Categories: CDH HBase HDFS Kafka Kudu Use Case

Timely data is crucial to businesses in the Big Data age: This blog post outlines how Santander UK utilises the latest Cloudera technologies and superior software development capability to create the next generation of data warehousing and streaming analytics to support intelligence that can improve relationships with customers and follow the mantra of ‘we want to help people grow and prosper.

Santander UK’s big data journey started around four years ago.

Read more

Scalability of Kafka Messaging using Consumer Groups

Categories: Data Ingestion Flume Kafka Use Case

Traditional messaging models fall into two categories: Shared Message Queues and Publish-Subscribe models. Both models have their own pros and cons. Neither could successfully handle big data ingestion at scale due to limitations in their design. Apache Kafka implements a publish-subscribe messaging model which provides fault tolerance, scalability to handle large volumes of streaming data for real-time analytics. It was developed at LinkedIn in 2010 to meet its growing data pipeline needs. Apache Kafka bridges the gaps that traditional messaging models failed to achieve.

Read more

Offheap Read-Path in Production – The Alibaba story

Categories: Hadoop HBase Performance Use Case

This article is syndicated with permission from the Apache HBase blog and highlights a collaboration between our partners at Intel and Alibaba engineering in time for “Singles Day“, the biggest shopping day on the net. For more on HBase, mark your calendars! On June 12th, 2017 the Apache HBase community will be hosting their annual HBaseCon.

Introduction

HBase is the core storage system in Alibaba’s Search Infrastructure.

Read more

How To Set Up a Shared Amazon RDS as Your Hive Metastore

Categories: Cloud Hadoop Hive How-to Impala Spark Use Case

Before CDH 5.10, every CDH cluster had to have its own Apache Hive Metastore (HMS) backend database. This model is ideal for clusters where each cluster contains the data locally along with the metadata. In the cloud, however, many CDH clusters run directly on a shared object store (like Amazon S3), making it possible for the data to live across multiple clusters and beyond any cluster’s lifespan. In this scenario clusters need to regenerate and coordinate metadata for the underlying shared data individually.

Read more

Analyzing US flight data on Amazon S3 with sparklyr and Apache Spark 2.0

Categories: CDH Data Science Hadoop Spark Use Case

We posted several blog posts about sparklyr (introduction, automation), which enables you to analyze big data leveraging Apache Spark seamlessly with R. sparklyr, developed by RStudio, is an R interface to Spark that allows users to use Spark as the backend for dplyr, which is the popular data manipulation package for R.

If you are interested in sparklyr, you can learn how to use it with the official document,

Read more