Cloudera Engineering Blog · Spark Posts

Architectural Patterns for Near Real-Time Data Processing with Apache Hadoop

Evaluating which streaming architectural pattern is the best match to your use case is a precondition for a successful production deployment.

The Apache Hadoop ecosystem has become a preferred platform for enterprises seeking to process and understand large-scale data in real time. Technologies like Apache Kafka, Apache Flume, Apache Spark, Apache Storm, and Apache Samza are increasingly pushing the envelope on what is possible. It is often tempting to bucket large-scale streaming use cases together but in reality they tend to break down into a few different architectural patterns, with different components of the ecosystem better suited for different problems.

Security, Hive-on-Spark, and Other Improvements in Apache Hive 1.2.0

Apache Hive 1.2.0, although not a major release, contains significant improvements.

Recently, the Apache Hive community moved to a more frequent, incremental release schedule. So, a little while ago, we covered the Apache Hive 1.0.0 release and explained how it was renamed from 0.14.1 with only minor feature additions since 0.14.0.

Working with Apache Spark: Or, How I Learned to Stop Worrying and Love the Shuffle

Our thanks to Ilya Ganelin, Senior Data Engineer at Capital One Labs, for the guest post below about his hard-earned lessons from using Spark.

I started using Apache Spark in late 2014, learning it at the same time as I learned Scala, so I had to wrap my head around the various complexities of a new language as well as a new computational framework. This process was a great in-depth introduction to the world of Big Data (I previously worked as an electrical engineer for Boeing), and I very quickly found myself deep in the guts of Spark. The hands-on experience paid off; I now feel extremely comfortable with Spark as my go-to tool for a wide variety of data analytics tasks, but my journey here was no cakewalk.

How-to: Translate from MapReduce to Apache Spark (Part 2)

The conclusion to this series covers Combiner-like aggregation functionality, counters, partitioning, and serialization.

Apache Spark is rising in popularity as an alternative to MapReduce, in a large part due to its expressive API for complex data processing. A few months ago, my colleague, Sean Owen wrote a post describing how to translate functionality from MapReduce into Spark, and in this post, I’ll extend that conversation to cover additional functionality.

How-to: Tune Your Apache Spark Jobs (Part 2)

In the conclusion to this series, learn how resource tuning, parallelism, and data representation affect Spark job performance.

In this post, we’ll finish what we started in “How to Tune Your Apache Spark Jobs (Part 1)”. I’ll try to cover pretty much everything you could care to know about making a Spark program run fast. In particular, you’ll learn about resource tuning, or configuring Spark to take advantage of everything the cluster has to offer. Then we’ll move to tuning parallelism, the most difficult as well as most important parameter in job performance. Finally, you’ll learn about representing the data itself, in the on-disk form which Spark will read (spoiler alert: use Apache Avro or Apache Parquet) as well as the in-memory format it takes as it’s cached or moves through the system.

Tuning Resource Allocation

How Edmunds.com Used Spark Streaming to Build a Near Real-Time Dashboard

Thanks to Sam Shuster, Software Engineer at Edmunds.com, for the guest post below about his company’s use case for Spark Streaming, SparkOnHBase, and Morphlines.

Every year, the Super Bowl brings parties, food and hopefully a great game to appease everyone’s football appetites until the fall. With any event that brings in around 114 million viewers with larger numbers each year, Americans have also grown accustomed to commercials with production budgets on par with television shows and with entertainment value that tries to rival even the game itself.

How-to: Build Re-usable Spark Programs using Spark Shell and Maven

Set up your own, or even a shared, environment for doing interactive analysis of time-series data.

Although software engineering offers several methods and approaches to produce robust and reliable components, a more lightweight and flexible approach is required for data analysts—who do not build “products” per se but still need high-quality tools and components. Thus, recently, I tried to find a way to re-use existing libraries and datasets stored already in HDFS with Apache Spark.

Exactly-once Spark Streaming from Apache Kafka

Thanks to Cody Koeninger, Senior Software Engineer at Kixer, for the guest post below about Apache Kafka integration points in Apache Spark 1.3. Spark 1.3 will ship in CDH 5.4.

The new release of Apache Spark, 1.3, includes new experimental RDD and DStream implementations for reading data from Apache Kafka. As the primary author of those features, I’d like to explain their implementation and usage. You may be interested if you would benefit from:

How-to: Tune Your Apache Spark Jobs (Part 1)

Learn techniques for tuning your Apache Spark jobs for optimal efficiency.

When you write Apache Spark code and page through the public APIs, you come across words like transformation, action, and RDD. Understanding Spark at this level is vital for writing Spark programs. Similarly, when things start to fail, or when you venture into the web UI to try to understand why your application is taking so long, you’re confronted with a new vocabulary of words like job, stage, and task. Understanding Spark at this level is vital for writing good Spark programs, and of course by good, I mean fast. To write a Spark program that will execute efficiently, it is very, very helpful to understand Spark’s underlying execution model.

Calculating CVA with Apache Spark

Thanks to Matthew Dixon, principal consultant at Quiota LLC and Professor of Analytics at the University of San Francisco, and Mohammad Zubair, Professor of Computer Science at Old Dominion University, for this guest post that demonstrates how to easily deploy exposure calculations on Apache Spark for in-memory analytics on scenario data.

Since the 2007 global financial crisis, financial institutions now more accurately measure the risks of over-the-counter (OTC) products. It is now standard practice for institutions to adjust derivative prices for the risk of the counter-party’s, or one’s own, default by means of credit or debit valuation adjustments (CVA/DVA).

Older Posts