Category Archives: Kudu

implyr: R Interface for Apache Impala

Categories: CDH Data Science HBase HDFS Impala Kudu Tools

New R package implyr enables R users to query Impala using dplyr.

Apache Impala (incubating) enables low-latency interactive SQL queries on data stored in HDFS, Amazon S3, Apache Kudu, and Apache HBase. With the availability of the R package implyr on CRAN and GitHub, it’s now possible to query Impala from R using the popular package dplyr.

dplyr provides a grammar of data manipulation,

Read more

Cloudera Enterprise 5.12 is Now Available

Categories: Altus CDH Cloud Cloudera Manager Cloudera Navigator Data Science Hue Impala Kafka Kudu

Cloudera is pleased to announce that Cloudera Enterprise 5.12 is now generally available (GA). The release includes enhancements for running in cloud environments (with broader ADLS support and improved AWS Spot Instance support), usability and productivity improvements for both data science and analytic workloads, as well as performance gains and self-service performance management across a range of workloads.

As usual, there are also a number of quality enhancements, bug fixes, and other improvements across the stack.

Read more

Bi-temporal data modeling with Envelope

Categories: CDH Data Ingestion Impala Kudu Spark

One of the most fundamental aspects a data model can convey is how something changes over time. This makes sense when considering that we build data models to capture what is happening in the real world, and the real world is constantly changing. The challenge is that it’s not just that new things are occurring, it’s that existing things are changing too, and if in our data models we overwrite the old state of an entity with the new state then we have lost information about the change.

Read more

Apache Kudu Read & Write Paths

Categories: CDH Kudu

Analytical and operational access patterns are very different and until now the Hadoop ecosystem has not had a single storage engine that could support both. As a result, engineers have been forced to implement complex architectures that stitch multiple systems together in order to provide these capabilities. On one hand immutable data on HDFS offers superior analytic performance, while mutable data in Apache HBase is best for operational workloads. Apache Kudu bridges this gap.  

Kudu’s architecture is shaped towards the ability to provide very good analytical performance,

Read more

Performance comparison of different file formats and storage engines in the Apache Hadoop ecosystem

Categories: Avro Guest Hadoop HBase Kudu Parquet

Zbigniew Baranowski is a database systems specialist and a member of a group which provides and supports central database and Hadoop-based services at CERN. This blog was originally released on CERN’s “Databases at CERN” blog, and is syndicated here with CERN’s permission.

 

TOPIC

This post presents a performance comparison of few popular data formats and storage engines available in the Apache Hadoop ecosystem: Apache Avro,

Read more