Cloudera Engineering Blog · Impala Posts

What’s Next for Impala: Focus on Advanced SQL Functionality

Impala 2.0 will add much more complete SQL functionality to what is already the fastest SQL-on-Hadoop solution available.

In September 2013, we provided a roadmap for Impala — the open source MPP SQL query engine for Apache Hadoop, which was on release 1.1 at the time — that documented planned functionality through release 2.0 and beyond.

New in CDH 5.1: HDFS Read Caching

Applications using HDFS, such as Impala, will be able to read data up to 59x faster thanks to this new feature.

Server memory capacity and bandwidth have increased dramatically over the last few years. Beefier servers make in-memory computation quite attractive, since a lot of interesting data sets can fit into cluster memory, and memory is orders of magnitude faster than disk.

New SQL Choices in the Apache Hadoop Ecosystem: Why Impala Continues to Lead

Impala continues to demonstrate performance leadership compared to alternatives (by 950% or more), while providing greater query throughput and with a far smaller CPU footprint.

In our previous post from January 2014, we reported that Impala had achieved query performance over Apache Hadoop equivalent to that of an analytic DBMS over its own proprietary storage system. We believed this was an important milestone because Impala’s objective has been to support a high-quality BI experience on Hadoop data, not to produce a “faster Apache Hive.” An enterprise-quality BI experience requires low latency and high concurrency (among other things), so surpassing a well-known proprietary MPP DBMS in these areas was important evidence of progress.
 
In the past nine months, we’ve also all seen additional public validation that the original technical design for Hive, while effective for batch processing, was a dead-end for BI workloads. Recent examples have included the launch of Facebook’s Presto engine (Facebook was the inventor and world’s largest user of Hive), the emergence of Shark (Hive running on the Apache Spark DAG), and the “Stinger” initiative (Hive running on the Apache Tez [incubating] DAG).
 
Given the introduction of a number of new SQL-on-Hadoop implementations it seemed like a good time to do a roundup of the latest versions of each engine to see how they differ. We find that Impala maintains a significant performance advantage over the various other open source alternatives — ranging from 5x to 23x depending on the workload and the implementations that are compared. This advantage is due to some inherent design differences among the various systems, which we’ll explain below. Impala’s advantage is strongest for multi-user workloads, which arguably is the most relevant measure for users evaluating their options for BI use cases.

Configuration

Cluster

Congratulations to Parquet, Now an Apache Incubator Project

Yesterday, Parquet was accepted into the Apache Incubator. Congratulations to all the contributors to what will eventually become Apache Parquet!

In its relatively short lifetime (co-founded by Twitter and Cloudera in July 2013), Parquet has already become the de facto standard for columnar storage of Apache Hadoop data — with native support in Impala, Apache Hive, Apache Pig, Apache Spark, MapReduce, Apache Tajo, Apache Drill, Apache Crunch, and Cascading (and forthcoming in Presto and Shark). Parquet adoption is also broad-based, with employees of the following companies (partial list) actively contributing:

How-to: Configure JDBC Connections in Secure Apache Hadoop Environments

Learn how HiveServer, Apache Sentry, and Impala help make Hadoop play nicely with BI tools when Kerberos is involved.

In 2010, I wrote a simple pair of blog entries outlining the general considerations behind using Apache Hadoop with BI tools. The Cloudera partner ecosystem has positively exploded since then, and the technology has matured as well. Today, if JDBC is involved, all the pieces needed to expose Hadoop data through familiar BI tools are available:

Using Impala at Scale at Allstate

Our thanks to Don Drake (@dondrake), an independent technology consultant who is currently working as a Principal Big Data Consultant at Allstate Insurance, for the guest post below about his experiences with Impala.

It started with a simple request from one of the managers in my group at Allstate to put together a demo of Tableau connecting to Cloudera Impala. I had previously worked on Impala with a large dataset about a year ago while it was still in beta, and was curious to see how Impala had improved since then in features and stability.

A New Python Client for Impala

The new Python client for Impala will bring smiles to Pythonistas!

As a data scientist, I love using the Python data stack. I also love using Impala to work with very large data sets. But things that take me out of my Python workflow are generally considered hassles; so it’s annoying that my main options for working with Impala are to write shell scripts, use the Impala shell, and/or transfer query results by reading/writing local files to disk.

Using Apache Hadoop and Impala with MySQL for Data Analysis

Thanks to Alexander Rubin of Percona for allowing us to re-publish the post below!

Apache Hadoop is commonly used for data analysis. It is fast for data loads and scalable. In a previous post I showed how to integrate MySQL with Hadoop. In this post I will show how to export a table from  MySQL to Hadoop, load the data to Cloudera Impala (columnar format), and run reporting on top of that. For the examples below, I will use the “ontime flight performance” data from my previous post.

How Impala Brings Real-Time, Big Data Analytics to Digital Reasoning’s Users

The following post, by Sarah Cannon of Digital Reasoning, was originally published in that company’s blog. Digital Reasoning has graciously permitted us to re-publish here for your convenience.

At the beginning of each release cycle, engineers at Digital Reasoning are given time to explore the latest in Big Data technologies, examining how the frequently changing landscape might be best adapted to serve our mission. As we sat down in the early stages of planning for Synthesys 3.8 one of the biggest issues we faced involved reconciling the tradeoff between flexibility and performance. How can users quickly and easily retrieve knowledge from Synthesys without being tied to one strict data model?

How-to: Use Parquet with Impala, Hive, Pig, and MapReduce

The CDH software stack lets you use your tool of choice with the Parquet file format – - offering the benefits of columnar storage at each phase of data processing. 

An open source project co-founded by Twitter and Cloudera, Parquet was designed from the ground up as a state-of-the-art, general-purpose, columnar file format for the Apache Hadoop ecosystem. In particular, Parquet has several features that make it highly suited to use with Cloudera Impala for data warehouse-style operations:

Older Posts