Category Archives: How-to

How-to: Use Impala and Kudu Together for Analytic Workloads

Categories: Data Science Hadoop How-to Impala Kudu Performance

Using Apache Impala (incubating) on top of Apache Kudu (incubating) has significant performance benefits

Apache Kudu (incubating) is the newest addition to the set of storage engines that integrate with the Apache Hadoop ecosystem. The promise of Kudu is to deliver high-scan performance, targeting analytical workloads, while allowing users to concurrently insert, update, and delete records. With these properties, Kudu becomes a viable alternative to existing combinations of HDFS and/or Apache HBase to achieve similar results with less complicated ETL pipelines,

Read More

How-to: Build a Real-Time Search System using StreamSets, Apache Kafka, and Cloudera Search

Categories: Cloudera Manager Guest How-to Hue Kafka Search

Thanks to Jonathan Natkins, a field engineer from StreamSets, for the guest post below about using StreamSets Data Collector—open source, GUI-driven ingest technology for developing and operating data pipelines with a minimum of code—and Cloudera Search and HUE to build a real-time search environment.

As pressure mounts on data engineers to deliver more data from more sources in less time, StreamSets Data Collector can serve as a linchpin in the data management process,

Read More

How-to: Install Cloudera Enterprise on Microsoft Azure (Part 1)

Categories: Cloud Guest How-to

Recently, GoDataDriven installed a Cloudera Enterprise (CDH + Cloudera Manager) cluster on Microsoft Azure. This two-part series, written by Alexander Bij and Tünde Alkemade and republished with permission, includes information about use case, design, and installation.

Processing large amounts of unstructured data requires serious computing power and also maintenance effort. As load on computing power typically fluctuates due to time and seasonal influences and/or processes running on certain times,

Read More

How-to: Train Models in R and Python using Apache Spark MLlib and H2O

Categories: Data Science How-to Spark

Creating and training machine-learning models is more complex on distributed systems, but there are lots of frameworks for abstracting that complexity.

There are more options now than ever from proven open source projects for doing distributed analytics, with Python and R become increasingly popular. In this post, you’ll learn the options for setting up a simple read-eval-print (REPL) environment with Python and R within the Cloudera QuickStart VM using APIs for two of the most popular cluster computing frameworks: Apache Spark (with MLlib) and H2O (from the company with the same name).

Read More

How-to: Design An Analytic Database Schema on Apache Impala (Incubating) with Indyco

Categories: Guest How-to Impala

Our thanks to Manuel Spezzani, Indyco Technical Leader, and Edward William Gnudi, Indyco’s Chief of Customer Happiness, for the guest post below about using Indyco alongside Apache Impala.

In this post, you will learn how to automatically design a complete data warehouse solution on top of Impala using Indyco, a tool for designing, exploring, and understand your business model (recently named Cloudera Certificated Partner for the Impala platform).

Read More