Cloudera Engineering Blog · Hadoop Posts

Cloudera Enterprise 5.2 is Released

Cloudera Enterprise 5.2 contains new functionality for security, cloud deployments, and real-time architectures, and support for the latest open source component releases and partner technologies.

We’re pleased to announce the release of Cloudera Enterprise 5.2 (comprising CDH 5.2, Cloudera Manager 5.2, Cloudera Director 1.0, and Cloudera Navigator 2.1).

How SQOOP-1272 Can Help You Move Big Data from Mainframe to Apache Hadoop

Thanks to M. Asokan, Chief Architect at Syncsort, for the guest post below.

Apache Sqoop provides a framework to move data between HDFS and relational databases in a parallel fashion using Hadoop’s MR framework. As Hadoop becomes more popular in enterprises, there is a growing need to move data from non-relational sources like mainframe datasets to Hadoop. Following are possible reasons for this:

The Definitive "Getting Started" Tutorial for Apache Hadoop + Your Own Demo Cluster

Using this new tutorial alongside Cloudera Live is now the fastest, easiest, and most hands-on way to get started with Hadoop.

At Cloudera, developer enablement is one of our most important objectives. One only has to look at examples from history (Java or SQL, for example) to know that knowledge fuels the ecosystem. That objective is what drives initiatives such as our community forums, the Cloudera QuickStart VM, and this blog itself.

New Benchmarks for SQL-on-Hadoop: Impala 1.4 Widens the Performance Gap

With 1.4, Impala’s performance lead over the SQL-on-Hadoop ecosystem gets wider, especially under multi-user load.

As noted in our recent post about the Impala 2.x roadmap (“What’s Next for Impala: Focus on Advanced SQL Functionality”), Impala’s ecosystem momentum continues to accelerate, with nearly 1 million downloads since the GA of 1.0, deployment by most of Cloudera’s enterprise data hub customers, and adoption by MapR, Amazon, and Oracle as a shipping product. Furthermore, in the past few months, independent sources such as IBM Research have confirmed that “Impala’s database-like architecture provides significant performance gains, compared to Hive’s MapReduce- or Tez-based runtime.”

Community Meetups during Strata + Hadoop World 2014

The meetup opportunities during the conference week are more expansive than ever — spanning Impala, Spark, HBase, Kafka, and more.

Strata + Hadoop World 2014 is a kaleidoscope of experiences for attendees, and those experiences aren’t contained within the conference center’s walls. For example, the meetups that occur during the conf week (which is concurrent with NYC DataWeek) are a virtual track for developers — and with Strata + Hadoop World being bigger than ever, so is the scope of that track.

Getting Started with Big Data Architecture

What does a “Big Data engineer” do, and what does “Big Data architecture” look like? In this post, you’ll get answers to both questions.

Apache Hadoop has come a long way in its relatively short lifespan. From its beginnings as a reliable storage pool with integrated batch processing using the scalable, parallelizable (though inherently sequential) MapReduce framework, we have witnessed the recent additions of real-time (interactive) components like Impala for interactive SQL queries and integration with Apache Solr as a search engine for free-form text exploration.

What’s Next for Impala: Focus on Advanced SQL Functionality

Impala 2.0 will add much more complete SQL functionality to what is already the fastest SQL-on-Hadoop solution available.

In September 2013, we provided a roadmap for Impala — the open source MPP SQL query engine for Apache Hadoop, which was on release 1.1 at the time — that documented planned functionality through release 2.0 and beyond.

Big Data Benchmarks: Toward Real-Life Use Cases

The Transaction Processing Council (TPC), working with Cloudera, recently announced the new TPCx-HS benchmark, a good first step toward providing a Big Data benchmark.

In this interview by Roberto Zicari with Francois Raab, the original author of the TPC-C Benchmark, and Yanpei Chen, a Performance Engineer at Cloudera, the interviewees share their thoughts on the next step for benchmarks that reflect real-world use cases.

Apache Hadoop 2.5.0 is Released

The Apache Hadoop community has voted to release Apache Hadoop 2.5.0.

Apache Hadoop 2.5.0 is a minor release in the 2.x release line and includes some major features and improvements, including:

New in CDH 5.1: HDFS Read Caching

Applications using HDFS, such as Impala, will be able to read data up to 59x faster thanks to this new feature.

Server memory capacity and bandwidth have increased dramatically over the last few years. Beefier servers make in-memory computation quite attractive, since a lot of interesting data sets can fit into cluster memory, and memory is orders of magnitude faster than disk.

Older Posts