Category Archives: Flume

New in Cloudera Enterprise 5.8: Flafka Improvements for Real-Time Data Ingest

Categories: Data Ingestion Flume Kafka

Learn about the new Apache Flume and Apache Kafka integration (aka, “Flafka”) available in CDH 5.8 and its support for the new enterprise features in Kafka 0.9.

Over a year ago, we wrote about the integration of Flume and Kafka (Flafka) for data ingest into Apache Hadoop. Since then, Flafka has proven to be quite popular among CDH users, and we believe that popularity is based on the fact that in Kafka deployments,

Read More

How-to: Ingest Email into Apache Hadoop in Real Time for Analysis

Categories: Data Ingestion Flume Hadoop Kafka Search Spark Use Case

Apache Hadoop is a proven platform for long-term storage and archiving of structured and unstructured data. Related ecosystem tools, such as Apache Flume and Apache Sqoop, allow users to easily ingest structured and semi-structured data without requiring the creation of custom code. Unstructured data, however, is a more challenging subset of data that typically lends itself to batch-ingestion methods. Although such methods are suitable for many use cases,

Read More

How-to: Detect and Report Web-Traffic Anomalies in Near Real-Time

Categories: CDH Flume Impala Spark Use Case

This framework based on Apache Flume, Apache Spark Streaming, and Apache Impala (incubating) can detect and report on abnormal bad HTTP requests within seconds.                     

Website performance and availability are mission-critical for companies of all types and sizes, not just those with a revenue stream directly tied to the web. Web pages can become unavailable for many reasons, including overburdened backing data stores or content-management systems or a delay in load times of third-party content such as advertisements.

Read More

Building, Benchmarking, and Tuning Syslog Ingest Architecture at Vodafone UK

Categories: Flume Hadoop Kafka Security Use Case

Vodafone UK’s new SIEM system relies on Apache Flume and Apache Kafka to ingest nearly 1 million events per second. In this post, learn about the architecture and performance-tuning techniques and that got it there.

SIEM platforms provide a useful tool for identifying indicators of compromise across disparate infrastructure. The catch is, they’re only as accurate as the fidelity of the data involved, which is why Apache Hadoop is becoming such a valuable platform for that use case.

Read More

Inside Santander’s Near Real-Time Data Ingest Architecture

Categories: Flume HBase Kafka

Learn about the near real-time data ingest architecture for transforming and enriching data streams using Apache Flume, Apache Kafka, and RocksDB at Santander UK.

Cloudera Professional Services has been working with Santander UK to build a near real-time (NRT) transactional analytics system on Apache Hadoop. The objective is to capture, transform, enrich, count, and store a transaction within a few seconds of a card purchase taking place. The system receives the bank’s retail customer card transactions and calculates the associated trend information aggregated by account holder and over a number of dimensions and taxonomies.

Read More