Category Archives: Flume

How-to: Detect and Report Web-Traffic Anomalies in Near Real-Time

Categories: CDH Flume Impala Spark Use Case

This framework based on Apache Flume, Apache Spark Streaming, and Apache Impala (incubating) can detect and report on abnormal bad HTTP requests within seconds.                     

Website performance and availability are mission-critical for companies of all types and sizes, not just those with a revenue stream directly tied to the web. Web pages can become unavailable for many reasons, including overburdened backing data stores or content-management systems or a delay in load times of third-party content such as advertisements.

Read More

Building, Benchmarking, and Tuning Syslog Ingest Architecture at Vodafone UK

Categories: Flume Hadoop Kafka Security Use Case

Vodafone UK’s new SIEM system relies on Apache Flume and Apache Kafka to ingest nearly 1 million events per second. In this post, learn about the architecture and performance-tuning techniques and that got it there.

SIEM platforms provide a useful tool for identifying indicators of compromise across disparate infrastructure. The catch is, they’re only as accurate as the fidelity of the data involved, which is why Apache Hadoop is becoming such a valuable platform for that use case.

Read More

Inside Santander’s Near Real-Time Data Ingest Architecture

Categories: Flume HBase Kafka

Learn about the near real-time data ingest architecture for transforming and enriching data streams using Apache Flume, Apache Kafka, and RocksDB at Santander UK.

Cloudera Professional Services has been working with Santander UK to build a near real-time (NRT) transactional analytics system on Apache Hadoop. The objective is to capture, transform, enrich, count, and store a transaction within a few seconds of a card purchase taking place. The system receives the bank’s retail customer card transactions and calculates the associated trend information aggregated by account holder and over a number of dimensions and taxonomies.

Read More

Designing Fraud-Detection Architecture That Works Like Your Brain Does

Categories: Flume HBase Kafka Spark Use Case

To design effective fraud-detection architecture, look no further than the human brain (with some help from Spark Streaming and Apache Kafka).

At its core, fraud detection is about detection whether people are behaving “as they should,” otherwise known as catching anomalies in a stream of events. This goal is reflected in diverse applications such as detecting credit-card fraud, flagging patients who are doctor shopping to obtain a supply of prescription drugs,

Read More

Architectural Patterns for Near Real-Time Data Processing with Apache Hadoop

Categories: Data Ingestion Flume Hadoop HBase Kafka Spark

Evaluating which streaming architectural pattern is the best match to your use case is a precondition for a successful production deployment.

The Apache Hadoop ecosystem has become a preferred platform for enterprises seeking to process and understand large-scale data in real time. Technologies like Apache Kafka, Apache Flume, Apache Spark, Apache Storm, and Apache Samza are increasingly pushing the envelope on what is possible. It is often tempting to bucket large-scale streaming use cases together but in reality they tend to break down into a few different architectural patterns,

Read More