Cloudera Developer Blog · Flume Posts

Email Indexing Using Cloudera Search

Why would any company be interested in searching through its vast trove of email? A better question is: Why wouldn’t everybody be interested? 

Email has become the most widespread method of communication we have, so there is much value to be extracted by making all emails searchable and readily available for further analysis. Some common use cases that involve email analysis are fraud detection, customer sentiment and churn, lawsuit prevention, and that’s just the tip of the iceberg. Each and every company can extract tremendous value based on its own business needs. 

How-to: Analyze Twitter Data with Hue

Hue 2.2 , the open source web-based interface that makes Apache Hadoop easier to use, lets you interact with Hadoop services from within your browser without having to go to a command-line interface. It features different applications like an Apache Hive editor and Apache Oozie dashboard and workflow builder.

This post is based on our “Analyzing Twitter Data with Hadoop” sample app and details how the same results can be achieved through Hue in a simpler way. Moreover, all the code and examples of the previous series have been updated to the recent CDH4.2 release.

Collecting Data

Meet the Engineer: Kathleen Ting

In this installment of “Meet the Engineer”, get to know Customer Operations Engineering Manager/Apache Sqoop committer Kathleen Ting (@kate_ting).

What do you do at Cloudera, and in what open-source projects are you involved?
I’m a support manager at Cloudera, and an Apache Sqoop committer and PMC member. I also contribute to the Apache Flume and Apache ZooKeeper mailing lists and organize and present at meetups, as well as speak at conferences, about those projects.

How-to: Do Apache Flume Performance Tuning (Part 1)

The post below was originally published via blogs.apache.org and is republished below for your reading pleasure.

This is Part 1 in a series of articles about tuning the performance of Apache Flume, a distributed, reliable, and available service for efficiently collecting, aggregating, and moving large amounts of event data.

Apache Hadoop in 2013: The State of the Platform

For several good reasons, 2013 is a Happy New Year for Apache Hadoop enthusiasts.

In 2012, we saw continued progress on developing the next generation of the MapReduce processing framework (MRv2), work that will bear fruit this year. HDFS experienced major progress toward becoming a lights-out, fully enterprise-ready distributed filesystem with the addition of high availability features and increased performance. And a hint of the future of the Hadoop platform was provided with the Beta release of Cloudera Impala, a real-time query engine for analytics across HDFS and Apache HBase data.

Streaming Data into Apache HBase using Apache Flume

The following post was originally published via blog.apache.org; we are re-publishing it here.

Apache Flume was conceived as a fault-tolerant ingest system for the Apache Hadoop ecosystem. Flume comes packaged with an HDFS Sink which can be used to write events into HDFS, and two different implementations of HBase sinks to write events into Apache HBase. You can read about the basic architecture of Apache Flume 1.x in this blog post. You can also read about how Flume’s File Channel persists events and still provides extremely high performance in an earlier blog post. In this article, we will explore how to configure Flume to write events into HBase, and write custom serializers to write events into HBase in a format of the user’s choice.

Analyzing Twitter Data with Apache Hadoop, Part 2: Gathering Data with Flume

This is the second article in a series about analyzing Twitter data using some of the components of the Hadoop ecosystem available in CDH, Cloudera’s open-source distribution of Apache Hadoop and related projects. In the first article, you learned how to pull CDH components together into a single cohesive application, but to really appreciate the flexibility of each of these components, we need to dive deeper.

Every story has a beginning, and every data pipeline has a source. So, to build Hadoop applications, we need to get data from a source into HDFS.

About Apache Flume FileChannel

The post below was originally published via blogs.apache.org and is republished below for your reading pleasure.

This blog post is about Apache Flume’s File Channel. Apache Flume is a distributed, reliable, and available service for efficiently collecting, aggregating, and moving large amounts of log data. It has a simple and flexible architecture based on streaming data flows. It is robust and fault tolerant with tunable reliability mechanisms and many failover and recovery mechanisms. It uses a simple extensible data model that allows for online analytic application.

Schedule This! Strata + Hadoop World Speakers from Cloudera

We’re getting really close to Strata Conference + Hadoop World 2012 (just over a month away), schedule planning-wise. So you may want to consider adding the tutorials, sessions, and keynotes below to your calendar! (Start times are always subject to change of course.)

The ones listed below are led or co-led by Clouderans, but there is certainly a wide range of attractive choices beyond what you see here. We just want to ensure that you put these particular ones high on your consideration list.

How-to: Analyze Twitter Data with Apache Hadoop

Social media has gained immense popularity with marketing teams, and Twitter is an effective tool for a company to get people excited about its products. Twitter makes it easy to engage users and communicate directly with them, and in turn, users can provide word-of-mouth marketing for companies by discussing the products. Given limited resources, and knowing we may not be able to talk to everyone we want to target directly, marketing departments can be more efficient by being selective about whom we reach out to.

In this post, we’ll learn how we can use Apache Flume, Apache HDFS, Apache Oozie, and Apache Hive to design an end-to-end data pipeline that will enable us to analyze Twitter data. This will be the first post in a series. The posts to follow to will describe, in more depth, how each component is involved and how the custom code operates. All the code and instructions necessary to reproduce this pipeline is available on the Cloudera Github.

Who is Influential?

Older Posts