Category Archives: CDH

Docker is the New QuickStart Option for Apache Hadoop and Cloudera

Categories: CDH Ops and DevOps QuickStart VM

Now there’s an even quicker “QuickStart” option for getting hands-on with the Apache Hadoop ecosystem and Cloudera’s platform: a new Docker image.

docker-logoYou might already be familiar with Cloudera’s popular QuickStart VM, a virtual image containing our distributed data processing platform. Originally intended as a demo environment, the QuickStart VM quickly evolved over time into quite a useful general-purpose environment for developers, customers,

Read More

Sustained Innovation in Apache Spark: DataFrames, Spark SQL, and MLlib

Categories: CDH Spark

Cloudera has announced support for Spark SQL/DataFrame API and MLlib. This post explains their benefits for app developers, data analysts, data engineers, and data scientists.

In July 2015, Cloudera re-affirmed its position since 2013: that Apache Spark is on course to replace MapReduce as the default general-purpose data processing engine for Apache Hadoop. Thanks to initiatives like the One Platform Initiative,

Read More

Cloudera Enterprise 5.5 is Now Generally Available

Categories: CDH Cloudera Manager

Cloudera Enterprise 5.5 (comprising CDH 5.5, Cloudera Manager 5.5, and Cloudera Navigator 2.4) has been released.

Cloudera is excited to bring you news of Cloudera Enterprise 5.5. Our persistent emphasis on quality is especially pronounced in this release, with more than 500 issues identified and triaged during its development.

A highlight of this release is the inclusion of Cloudera Navigator Optimizer (available in limited beta for select Cloudera Enterprise customers;

Read More

How-to: Build a Machine-Learning App Using Sparkling Water and Apache Spark

Categories: CDH Data Science Guest How-to Spark

Thanks to Michal Malohlava, Amy Wang, and Avni Wadhwa of for providing the following guest post about building ML apps using Sparkling Water and Apache Spark on CDH.

The Sparkling Water project is nearing its one-year anniversary, which means Michal Malohlava, our main contributor, has been very busy for the better part of this past year. The Sparkling Water project combines H2O machine-learning algorithms with the execution power of Apache Spark.

Read More

How-to: Prepare Your Apache Hadoop Cluster for PySpark Jobs

Categories: CDH Hadoop How-to Spark

Proper configuration of your Python environment is a critical pre-condition for using Apache Spark’s Python API.

One of the most enticing aspects of Apache Spark for data scientists is the API it provides in non-JVM languages for Python (via PySpark) and for R (via SparkR). There are a few reasons that these language bindings have generated a lot of excitement: Most data scientists think writing Java or Scala is a drag,

Read More