Cloudera Engineering Blog

Big Data best practices, how-to's, and internals from Cloudera Engineering and the community


How-to: Use BIRT with Impala for Interactive Big Data Reporting

Thanks to Michael Williams, BIRT Product Evangelist & Forums Manager at analytics software specialist Actuate Corp. (now OpenText), for the guest post below. Actuate is the primary builder and supporter of BIRT, a top-level project of the Eclipse Foundation.

The Actuate (now OpenText) products BIRT Designer Professional and BIRT iHub allow you to connect to multiple data sources to create and deliver meaningful visualizations securely, with scalability reaching millions of users and devices. And now, with Impala emerging as a standard Big Data query engine for many of Actuate’s customers, solid BIRT integration with Impala has become critical.

Tutorials at Strata + Hadoop World San Jose: Architecture, Hadoop Ops, Interactive SQL-on-Hadoop

Strata + Hadoop World San Jose 2015 (Feb. 17-20) is a focal point for learning about production-izing Hadoop.

Strata + Hadoop World sessions have always been indispensable for learning about Hadoop internals, use cases, and admin best practices. When deep learning is needed, however—and deep dives are a necessity if you’re running Hadoop in production, or aspire to—tutorials are your ticket.

New in CDH 5.3: Apache Sentry Integration with HDFS

Starting in CDH 5.3, Apache Sentry integration with HDFS saves admins a lot of work by centralizing access control permissions across components that utilize HDFS.

It’s been more than a year and a half since a couple of my colleagues here at Cloudera shipped the first version of Sentry (now Apache Sentry (incubating)). This project filled a huge security gap in the Apache Hadoop ecosystem by bringing truly secure and dependable fine grained authorization to the Hadoop ecosystem and provided out-of-the-box integration for Apache Hive. Since then the project has grown significantly–adding support for Impala and Search and the wonderful Hue App to name a few significant additions.

Advanced Analytics with Apache Spark: The Book

Authored by a substantial portion of Cloudera’s Data Science team (Sean Owen, Sandy Ryza, Uri Laserson, Josh Wills), Advanced Analytics with Spark (currently in Early Release from O’Reilly Media) is the newest addition to the pipeline of ecosystem books by Cloudera engineers. I talked to the authors recently.

Why did you decide to write this book?

New in Cloudera Labs: Google Cloud Dataflow on Apache Spark

Cloudera and Google are collaborating to bring Google Cloud Dataflow to Apache Spark users (and vice-versa). This new project is now incubating in Cloudera Labs!

“The future is already here—it’s just not evenly distributed.” —William Gibson

How-to: Deploy Apache Hadoop Clusters Like a Boss

Learn how to set up a Hadoop cluster in a way that maximizes successful production-ization of Hadoop and minimizes ongoing, long-term adjustments.

Previously, we published some recommendations on selecting new hardware for Apache Hadoop deployments. That post covered some important ideas regarding cluster planning and deployment such as workload profiling and general recommendations for CPU, disk, and memory allocations. In this post, we’ll provide some best practices and guidelines for the next part of the implementation process: configuring the machines once they arrive. Between the two posts, you’ll have a great head start toward production-izing Hadoop.

Improving Sort Performance in Apache Spark: It’s a Double

Cloudera and Intel engineers are collaborating to make Spark’s shuffle process more scalable and reliable. Here are the details about the approach’s design.

What separates computation engines like MapReduce and Apache Spark (the next-generation data processing engine for Apache Hadoop) from embarrassingly parallel systems is their support for “all-to-all” operations. As distributed engines, MapReduce and Spark operate on sub-slices of a dataset partitioned across the cluster. Many operations process single data-points at a time and can be carried out fully within each partition. All-to-all operations must consider the dataset as a whole; the contents of each output record can depend on records that come from many different partitions. In Spark, groupByKey, sortByKey, and reduceByKey are popular examples of these types of operations.

Using Apache Sqoop for Load Testing

Our thanks to Montrial Harrell, Enterprise Architect for the State of Indiana, for the guest post below.

Recently, the State of Indiana has begun to focus on how enterprise data management can help our state’s government operate more efficiently and improve the lives of our residents. With that goal in mind, I began this journey just like everyone else I know: with an interest in learning more about Apache Hadoop.

Where to Find Cloudera Tech Talks (through March 2015)

Find Cloudera tech talks in Austin, London, Washington DC, Zurich, and other cities through March 2015.

Below please find our regularly scheduled quarterly update about where to find tech talks by Cloudera employees—this time, through the first quarter of calendar year 2015. Note that this list will be continually curated during the period; complete logistical information may not be available yet. And remember, many of these talks are in “free” venues (no cost of entry).

New Advanced Analytics and Data Wrangling Tutorials on Cloudera Live

A new Spark tutorial and Trifacta deployment option make Cloudera Live even more useful for getting started with Apache Hadoop.

When it comes to learning Hadoop and CDH (Cloudera’s open source platform including Hadoop), there is no better place to start than Cloudera Live (cloudera.com/live).  With a quick, one-button deployment option, Cloudera Live launches a four-node Cloudera cluster that you can learn and experiment in free for two-weeks. To help plan and extend the capabilities of your cluster, we also offer various partner deployments. Building on the addition of interactive tutorials and Tableau and Zoomdata integration, we have added a new tutorial on Apache Spark and a new Trifacta partner deployment.

Older Posts