Category Archives: AI and Machine Learning

Putting Machine Learning Models into Production

Categories: AI and Machine Learning Cloudera Data Science Workbench Spark

Once the data science is done (and you know where your data comes from, what it looks like, and what it can predict) comes the next big step: you now have to put your model into production and make it useful for the rest of the business. This is the start of the model operations life cycle. The key focus areas (detailed in the diagram below) are usually managed by machine learning engineers after the data scientists have done their work.

Read more

A Guide to Learning with Limited Labeled Data

Categories: AI and Machine Learning Fast Forward Labs

This was originally published on the Fast Forward Labs blog

We are excited to release Learning with Limited Labeled Data, the latest report and prototype from Cloudera Fast Forward Labs.

Being able to learn with limited labeled data relaxes the stringent labeled data requirement for supervised machine learning. Our report focuses on active learning, a technique that relies on collaboration between machines and humans to label smartly.

Read more

Using Native Math Libraries to Accelerate Spark Machine Learning Applications

Categories: AI and Machine Learning CDH Performance Spark

[Editor’s note: The original version of this article was published as part of our Guru How-To series for Data Science. Be sure to also check out the series for Cloudera Data Warehouse.]

 

Spark ML is one of the dominant frameworks for many major machine learning algorithms, such as the Alternating Least Squares (ALS) algorithm for recommendation systems, the Principal Component Analysis algorithm, and the Random Forest algorithm.

Read more

Integrating Machine Learning Models into Your Big Data Pipelines in Real-Time With No Coding

Categories: AI and Machine Learning CDH Cloudera Data Science Workbench How-to

[Editor’s note: This article was originally published on the Hortonworks Community Connection, but reproduced here because CDSW is now available on both Cloudera and Hortonworks platforms.]

Using Deployed Models as a Function as a Service

104409 dataengineering 104410 datascience 104431 flowmanagement

Using Cloudera Data Science Workbench with Apache NiFi, we can easily call functions within our deployed models from Apache NiFi as part of flows. I am working against CDSW on HDP (https://www.cloudera.com/documentation/data-science-workbench/latest/topics/cdsw_hdp.html), 

Read more