Tag Archives: Testing

Progress Report: Bringing Erasure Coding to Apache Hadoop

Categories: Hadoop HDFS Performance

Get an update on the progress of the effort to bring erasure coding to HDFS, including a report about fresh performance benchmark testing results.

About a year ago, the Apache Hadoop community began the HDFS-EC project to build native erasure coding support inside HDFS (currently targeted for the 2.9/3.0 release). Since then, we have designed and implemented basic functionalities in the first phase of the project under HDFS-7285,

Read More

Docker is the New QuickStart Option for Apache Hadoop and Cloudera

Categories: CDH Ops and DevOps QuickStart VM Testing

Now there’s an even quicker “QuickStart” option for getting hands-on with the Apache Hadoop ecosystem and Cloudera’s platform: a new Docker image.

docker-logoYou might already be familiar with Cloudera’s popular QuickStart VM, a virtual image containing our distributed data processing platform. Originally intended as a demo environment, the QuickStart VM quickly evolved over time into quite a useful general-purpose environment for developers, customers,

Read More

How-to: Use Impala with Kudu

Categories: How-to Impala Kudu

Learn the details about using Impala alongside Kudu.

Kudu (currently in beta), the new storage layer for the Apache Hadoop ecosystem, is tightly integrated with Impala, allowing you to insert, query, update, and delete data from Kudu tablets using Impala’s SQL syntax, as an alternative to using the Kudu APIs to build a custom Kudu application. In addition, you can use JDBC or ODBC to connect existing or new applications written in any language,

Read More

Continuous Distribution Goodness-of-Fit in MLlib: Kolmogorov-Smirnov Testing in Apache Spark

Categories: Spark

Thanks to former Cloudera intern Jose Cambronero for the post below about his summer project, which involved contributions to MLlib in Apache Spark.

Data can come in many shapes and forms, and can be described in many ways. Statistics like the mean and standard deviation of a sample provide descriptions of some of its important qualities. Less commonly used statistics such as skewness and kurtosis provide additional perspective into the data’s profile.

Read More

Making Apache Spark Testing Easy with Spark Testing Base

Categories: Guest Spark

Thanks to Holden Karau (@holdenkarau), Software Engineer at Alpine Data Labs (also a Spark contributor and book author), for providing the following post about her work on new base classes for testing Apache Spark programs.

Testing in the world of Apache Spark has often involved a lot of hand-rolled artisanal code, which frankly is a good way to ensure that developers write as few tests as possible. I’ve been doing some work with Spark Testing Base (also available on Spark Packages) to try and make testing Spark jobs as easy as “normal”

Read More