Tag Archives: platform

Impala’s Next Step: Proposal to Join the Apache Software Foundation

Categories: Impala Kudu

The Impala project has already passed several important milestones on the way to its status as the leader and open standard for BI and SQL analytics on modern big data architecture. Today’s milestone is the submission of proposals for Impala and Kudu to join the Apache Software Foundation (ASF) Incubator.

[Update: Read the text of the Impala and Kudu proposals here and here, respectively.]

Since its initial release nearly five years ago,

Read more

How-to: Build a Complex Event Processing App on Apache Spark and Drools

Categories: HBase How-to Kafka Spark Use Case

Combining CDH with a business execution engine can serve as a solid foundation for complex event processing on big data.

Event processing involves tracking and analyzing streams of data from events to support better insight and decision making. With the recent explosion in data volume and diversity of data sources, this goal can be quite challenging for architects to achieve.

Complex event processing (CEP) is a type of event processing that combines data from multiple sources to identify patterns and complex relationships across various events.

Read more

How-to: Build a Machine-Learning App Using Sparkling Water and Apache Spark

Categories: CDH Data Science Guest How-to Spark

Thanks to Michal Malohlava, Amy Wang, and Avni Wadhwa of H20.ai for providing the following guest post about building ML apps using Sparkling Water and Apache Spark on CDH.

The Sparkling Water project is nearing its one-year anniversary, which means Michal Malohlava, our main contributor, has been very busy for the better part of this past year. The Sparkling Water project combines H2O machine-learning algorithms with the execution power of Apache Spark.

Read more

Continuous Distribution Goodness-of-Fit in MLlib: Kolmogorov-Smirnov Testing in Apache Spark

Categories: Spark

Thanks to former Cloudera intern Jose Cambronero for the post below about his summer project, which involved contributions to MLlib in Apache Spark.

Data can come in many shapes and forms, and can be described in many ways. Statistics like the mean and standard deviation of a sample provide descriptions of some of its important qualities. Less commonly used statistics such as skewness and kurtosis provide additional perspective into the data’s profile.

Read more

How-to: Prepare Your Apache Hadoop Cluster for PySpark Jobs

Categories: CDH Hadoop How-to Spark

Proper configuration of your Python environment is a critical pre-condition for using Apache Spark’s Python API.

One of the most enticing aspects of Apache Spark for data scientists is the API it provides in non-JVM languages for Python (via PySpark) and for R (via SparkR). There are a few reasons that these language bindings have generated a lot of excitement: Most data scientists think writing Java or Scala is a drag,

Read more