Tag Archives: Cloudera Data Science Workbench

What’s New in Cloudera Director 2.7?

Categories: Cloudera Director

Cloudera Director 2.7 introduces support for LDAP authentication, improved Java 8 support, and instance template level normalization configuration. Continuing improvements have been made to the AWS plugin.

Cloudera Director helps you deploy, scale, and manage Cloudera clusters in AWS, Azure, or Google Cloud Platform. Its enterprise-grade features deliver a mechanism for establishing production-ready clusters in the cloud for big-data workloads and applications in a simple, reliable, automated fashion.

Read more

Deploy Cloudera EDH Clusters Like a Boss Revamped – Part 2

Categories: CDH Hadoop HDFS

In Part 1: Infrastructure Considerations in this three part revamped series on deploying clusters like a boss, we provided a general explanation for how nodes are classified, disk layout configurations and network topologies to think about when deploying your clusters.

In this Part 2: Service and Role Layouts segment of the series, we take a step higher up the stack looking at the various services and roles that make up your Cloudera Enterprise deployment.

Read more

New in Cloudera Data Science Workbench 1.2: Usage Monitoring for Administrators

Categories: CDH Cloudera Data Science Workbench Data Science Performance

Cloudera Data Science Workbench (CDSW) provides data science teams with a self-service platform for quickly developing machine learning workloads in their preferred language, with secure access to enterprise data and simple provisioning of compute. Individuals can request schedulable resources (e.g. compute, memory, GPUs) on a shared cluster that is managed centrally.

While self-service provisioning of resources is critical to the rapid interaction cycle of data scientists, it can pose a challenge to administrators.

Read more

Deep learning with Apache MXNet on Cloudera Data Science Workbench

Categories: CDH Cloudera Data Science Workbench Data Science

With the abundance of deep learning frameworks available today, it can be difficult to know what to choose for any particular application. Given the contrasting strengths and weaknesses of these frameworks, the ability to work with and switch between more than one is particularly important. Recent Cloudera blogs have shown how examples of applying deep learning on the Cloudera ecosystem using popular frameworks Deeplearning4j, BigDL, and Keras+TensorFlow.

Read more