Cloudera Engineering Blog

Big Data best practices, how-to's, and internals from Cloudera Engineering and the community


Apache Hive 1.0.0 Has Been Released

The Apache Hive PMC has recently voted to release Hive 1.0.0 (formerly known as Hive 0.14.1).

This release is recognition of the work the Apache Hive community has done over the past nine years and is continuing to do. The Apache Hive 1.0.0 release is a codebase that was expected to be released as 0.14.1 but the community felt it was time to move to a 1.x.y release naming structure.

How-to: Do Real-time Big Data Discovery using Cloudera Enterprise and Qlik Sense

Thanks to Jesus Centeno of Qlik for the post below about using Impala alongside Qlik Sense.

Cloudera and Qlik (which is part of the Impala Accelerator Program) have revolutionized the delivery of insights and value to every business stakeholder for “small data,” to something more powerful in the Big Data world—enabling users to combine Big Data and “small data” to yield actionable business insights.

Got SQL? Xplain.io Joins Cloudera

Xplain.io is now part of Cloudera. 

Fifteen months ago, Rituparna Agrawal and I incorporated Xplain.io in a small shed in my backyard. With intense focus on solving real customer problems, we built an eclectic and diverse team with skills across database internals, distributed systems, and customer-centric design.

This Month in the Ecosystem (January 2015)

Welcome to our 16th edition of “This Month in the Ecosystem,” a digest of highlights from January 2015 (never intended to be comprehensive; for that, see the excellent Hadoop Weekly). 

You may have noticed that this report went on hiatus for December 2014 due to a lack of critical news mass (plus, we realize that most of you are out of the loop until mid-January). It’s back with a vengeance, though:

How-to: Use BIRT with Impala for Interactive Big Data Reporting

Thanks to Michael Williams, BIRT Product Evangelist & Forums Manager at analytics software specialist Actuate Corp. (now OpenText), for the guest post below. Actuate is the primary builder and supporter of BIRT, a top-level project of the Eclipse Foundation.

The Actuate (now OpenText) products BIRT Designer Professional and BIRT iHub allow you to connect to multiple data sources to create and deliver meaningful visualizations securely, with scalability reaching millions of users and devices. And now, with Impala emerging as a standard Big Data query engine for many of Actuate’s customers, solid BIRT integration with Impala has become critical.

Tutorials at Strata + Hadoop World San Jose: Architecture, Hadoop Ops, Interactive SQL-on-Hadoop

Strata + Hadoop World San Jose 2015 (Feb. 17-20) is a focal point for learning about production-izing Hadoop.

Strata + Hadoop World sessions have always been indispensable for learning about Hadoop internals, use cases, and admin best practices. When deep learning is needed, however—and deep dives are a necessity if you’re running Hadoop in production, or aspire to—tutorials are your ticket.

New in CDH 5.3: Apache Sentry Integration with HDFS

Starting in CDH 5.3, Apache Sentry integration with HDFS saves admins a lot of work by centralizing access control permissions across components that utilize HDFS.

It’s been more than a year and a half since a couple of my colleagues here at Cloudera shipped the first version of Sentry (now Apache Sentry (incubating)). This project filled a huge security gap in the Apache Hadoop ecosystem by bringing truly secure and dependable fine grained authorization to the Hadoop ecosystem and provided out-of-the-box integration for Apache Hive. Since then the project has grown significantly–adding support for Impala and Search and the wonderful Hue App to name a few significant additions.

Advanced Analytics with Apache Spark: The Book

Authored by a substantial portion of Cloudera’s Data Science team (Sean Owen, Sandy Ryza, Uri Laserson, Josh Wills), Advanced Analytics with Spark (currently in Early Release from O’Reilly Media) is the newest addition to the pipeline of ecosystem books by Cloudera engineers. I talked to the authors recently.

Why did you decide to write this book?

New in Cloudera Labs: Google Cloud Dataflow on Apache Spark

Cloudera and Google are collaborating to bring Google Cloud Dataflow to Apache Spark users (and vice-versa). This new project is now incubating in Cloudera Labs!

“The future is already here—it’s just not evenly distributed.” —William Gibson

How-to: Deploy Apache Hadoop Clusters Like a Boss

Learn how to set up a Hadoop cluster in a way that maximizes successful production-ization of Hadoop and minimizes ongoing, long-term adjustments.

Previously, we published some recommendations on selecting new hardware for Apache Hadoop deployments. That post covered some important ideas regarding cluster planning and deployment such as workload profiling and general recommendations for CPU, disk, and memory allocations. In this post, we’ll provide some best practices and guidelines for the next part of the implementation process: configuring the machines once they arrive. Between the two posts, you’ll have a great head start toward production-izing Hadoop.

Newer Posts Older Posts