Cloudera Engineering Blog

Big Data best practices, how-to's, and internals from Cloudera Engineering and the community

Using Apache Sqoop for Load Testing

Our thanks to Montrial Harrell, Enterprise Architect for the State of Indiana, for the guest post below.

Recently, the State of Indiana has begun to focus on how enterprise data management can help our state’s government operate more efficiently and improve the lives of our residents. With that goal in mind, I began this journey just like everyone else I know: with an interest in learning more about Apache Hadoop.

Where to Find Cloudera Tech Talks (through March 2015)

Find Cloudera tech talks in Austin, London, Washington DC, Zurich, and other cities through March 2015.

Below please find our regularly scheduled quarterly update about where to find tech talks by Cloudera employees—this time, through the first quarter of calendar year 2015. Note that this list will be continually curated during the period; complete logistical information may not be available yet. And remember, many of these talks are in “free” venues (no cost of entry).

New Advanced Analytics and Data Wrangling Tutorials on Cloudera Live

A new Spark tutorial and Trifacta deployment option make Cloudera Live even more useful for getting started with Apache Hadoop.

When it comes to learning Hadoop and CDH (Cloudera’s open source platform including Hadoop), there is no better place to start than Cloudera Live (  With a quick, one-button deployment option, Cloudera Live launches a four-node Cloudera cluster that you can learn and experiment in free for two-weeks. To help plan and extend the capabilities of your cluster, we also offer various partner deployments. Building on the addition of interactive tutorials and Tableau and Zoomdata integration, we have added a new tutorial on Apache Spark and a new Trifacta partner deployment.

New in CDH 5.3: Transparent Encryption in HDFS

Support for transparent, end-to-end encryption in HDFS is now available and production-ready (and shipping inside CDH 5.3 and later). Here’s how it works.

Apache Hadoop 2.6 adds support for transparent encryption to HDFS. Once configured, data read from and written to specified HDFS directories will be transparently encrypted and decrypted, without requiring any changes to user application code. This encryption is also end-to-end, meaning that data can only be encrypted and decrypted by the client. HDFS itself never handles unencrypted data or data encryption keys. All these characteristics improve security, and HDFS encryption can be an important part of an organization-wide data protection story.

How-to: Ingest Data Quickly Using the Kite CLI

Thanks to Ben Harden of CapTech for allowing us to re-publish the post below.

Getting delimited flat file data ingested into Apache Hadoop and ready for use is a tedious task, especially when you want to take advantage of file compression, partitioning and performance gains you get from using the Avro and Parquet file formats. 

Cloudera Enterprise 5.3 is Released

We’re pleased to announce the release of Cloudera Enterprise 5.3 (comprising CDH 5.3, Cloudera Manager 5.3, and Cloudera Navigator 2.2).

This release continues the drumbeat for security functionality in particular, with HDFS encryption (jointly developed with Intel under Project Rhino) now recommended for production use. This feature alone should justify upgrades for security-minded users (and an improved CDH upgrade wizard makes that process easier).

HBaseCon 2015: Call for Papers and Early Bird Registration

HBaseCon 2015 is ON, people! Book Thursday, May 7, in your calendars.

If you’re a developer in Silicon Valley, you probably already know that since its debut in 2012, HBaseCon has been one of the best developer community conferences out there. If you’re not, this is a great opportunity to learn that for yourself: HBaseCon 2015 will occur on Thurs., May 7, 2015, at the Westin St. Francis on Union Square in San Francisco.

New in Cloudera Labs: SparkOnHBase

As we progressively move from MapReduce to Spark, we shouldn’t have to give up good HBase integration. Hence the newest Cloudera Labs project, SparkOnHBase!

[Ed. Note: In Aug. 2015, SparkOnHBase was committed to the Apache HBase trunk in the form of a new HBase-Spark module.]

The Top 10 Posts of 2014 from the Cloudera Engineering Blog

Our “Top 10″ list of blog posts published during a calendar year is a crowd favorite (see the 2013 version here), in particular because it serves as informal, crowdsourced research about popular interests. Page views don’t lie (although skew for publishing date—clearly, posts that publish earlier in the year have pole position—has to be taken into account). 

In 2014, a strong interest in various new components that bring real time or near-real time capabilities to the Apache Hadoop ecosystem is apparent. And we’re particularly proud that the most popular post was authored by a non-employee.

  1. How-to: Create a Simple Hadoop Cluster with VirtualBox
    by Christian Javet
    Explains how t set up a CDH-based Hadoop cluster in less than an hour using VirtualBox and Cloudera Manager.
  2. Why Apache Spark is a Crossover Hit for Data Scientists
    by Sean Owen

    An explanation of why Spark is a compelling multi-purpose platform for use cases that span investigative, as well as operational, analytics. 
  3. How-to: Run a Simple Spark App in CDH 5
    by Sandy Ryza
    Helps you get started with Spark using a simple example.
  4. New SQL Choices in the Apache Hadoop Ecosystem: Why Impala Continues to Lead
    by Justin Erickson, Marcel Kornacker & Dileep Kumar

    Open benchmark testing of Impala 1.3 demonstrates performance leadership compared to alternatives (by 950% or more), while providing greater query throughput and with a far smaller CPU footprint.
  5. Apache Kafka for Beginners
    by Gwen Shapira & Jeff Holoman
    When used in the right way and for the right use case, Kafka has unique attributes that make it a highly attractive option for data integration.
  6. Apache Hadoop YARN: Avoiding 6 Time-Consuming “Gotchas”
    by Jeff Bean
    Understanding some key differences between MR1 and MR2/YARN will make your migration much easier.
  7. Impala Performance Update: Now Reaching DBMS-Class Speed
    by Justin Erickson, Greg Rahn, Marcel Kornacker & Yanpei Chen
    As of release 1.1.1, Impala’s speed beat the fastest SQL-on-Hadoop alternatives–including a popular analytic DBMS running on its own proprietary data store.
  8. The Truth About MapReduce Performance on SSDs
    by Karthik Kambatla & Yanpei Chen

    It turns out that cost-per-performance, not cost-per-capacity, is the better metric for evaluating the true value of SSDs. (See the session on this topic at Strata+Hadoop World San Jose in Feb. 2015!)
  9. How-to: Translate from MapReduce to Spark
    by Sean Owen

    The key to getting the most out of Spark is to understand the differences between its RDD API and the original Mapper and Reducer API.
  10. How-to: Write and Run Apache Giraph Jobs on Hadoop
    by Mirko Kämpf
    Explains how to create a test environment for writing and testing Giraph jobs, or just for playing around with Giraph and small sample datasets.

Hands-on Hive-on-Spark in the AWS Cloud

Interested in Hive-on-Spark progress? This new AMI gives you a hands-on experience.

Nearly one year ago, the Apache Hadoop community began to embrace Apache Spark as a powerful batch-processing engine. Today, many organizations and projects are augmenting their Hadoop capabilities with Spark. As part of this shift, the Apache Hive community is working to add Spark as an execution engine for Hive. The Hive-on-Spark work is being tracked by HIVE-7292 which is one of the most popular JIRAs in the Hadoop ecosystem. Furthermore, three weeks ago, the Hive-on-Spark team offered the first demo of Hive on Spark.

5 Pitfalls of Benchmarking Big Data Systems

Benchmarking Big Data systems is nontrivial. Avoid these traps!

Here at Cloudera, we know how hard it is to get reliable performance benchmarking results. Benchmarking matters because one of the defining characteristics of Big Data systems is the ability to process large datasets faster. “How large” and “how fast” drive technology choices, purchasing decisions, and cluster operations. Even with the best intentions, performance benchmarking is fraught with pitfalls—easy to get numbers, hard to tell if they are sound.

The Impala Cookbook

Bookmark this new living document to ensure use of current and proper configuration, sizing, management, and measurement practices.

Impala, the open source MPP analytic database for Apache Hadoop, is now firmly entrenched in the Big Data mainstream. How do we know this? For one, Impala is now the standard against which alternatives measure themselves, based on a proliferation of new benchmark testing. Furthermore, Impala has been adopted by multiple vendors as their solution for letting customers do exploratory analysis on Big Data, natively and in place (without the need for redundant architecture or ETL). Also significant, we’re seeing the emergence of best practices and patterns out of customer experiences.

Progress Report: Community Contributions to Parquet

Community contributions to Parquet are increasing in parallel with its adoption. Here are some of the highlights.

Apache Parquet (incubating), the open source, general-purpose columnar storage format for Apache Hadoop, was co-founded only 18 months ago by Cloudera and Twitter. Since that time, its rapid adoption by multiple platform vendors and communities has made it a de facto standard for this purpose.

New in CDH 5.2: Improvements for Running Multiple Workloads on a Single HBase Cluster

These new Apache HBase features in CDH 5.2 make multi-tenant environments easier to manage.

Historically, Apache HBase treats all tables, users, and workloads with equal weight. This approach is sufficient for a single workload, but when multiple users and multiple workloads were applied on the same cluster or table, conflicts can arise. Fortunately, starting with HBase in CDH 5.2 (HBase 0.98 + backports), workloads and users can now be prioritized.

This Month in the Ecosystem (November 2014)

Welcome to our 15th edition of “This Month in the Ecosystem,” a digest of highlights from November 2014 (never intended to be comprehensive; for that, see the excellent Hadoop Weekly).

November was busy, even accounting for the US Thanksgiving holiday:

For Apache Hadoop, The POODLE Attack Has Lost Its Bite

A significant vulnerability affecting the entire Apache Hadoop ecosystem has now been patched. What was involved?

By now, you may have heard about the POODLE (Padding Oracle On Downgraded Legacy Encryption) attack on TLS (Transport Layer Security). This attack combines a cryptographic flaw in the obsolete SSLv3 protocol with the ability of an attacker to downgrade TLS connections to use that protocol. The result is that an active attacker on the same network as the victim can potentially decrypt parts of an otherwise encrypted channel. The only immediately workable fix has been to disable the SSLv3 protocol entirely.

Tuning Java Garbage Collection for HBase

This guest post from Intel Java performance architect Eric Kaczmarek (originally published here) explores how to tune Java garbage collection (GC) for Apache HBase focusing on 100% YCSB reads.

Apache HBase is an Apache open source project offering NoSQL data storage. Often used together with HDFS, HBase is widely used across the world. Well-known users include Facebook, Twitter, Yahoo, and more. From the developer’s perspective, HBase is a “distributed, versioned, non-relational database modeled after Google’s Bigtable, a distributed storage system for structured data”. HBase can easily handle very high throughput by either scaling up (i.e., deployment on a larger server) or scaling out (i.e., deployment on more servers).

Apache Hadoop 2.6 is Released

The Apache Hadoop community has voted to release Hadoop 2.6. Congrats to all contributors!

This new release contains a variety of improvements, particularly in the storage layer and in YARN. We’re particularly excited about the encryption-at-rest feature in HDFS!

BigBench: Toward An Industry-Standard Benchmark for Big Data Analytics

Learn about BigBench, the new industrywide effort to create a sorely needed Big Data benchmark.

Benchmarking Big Data systems is an open problem. To address this concern, numerous hardware and software vendors are working together to create a comprehensive end-to-end big data benchmark suite called BigBench. BigBench builds upon and borrows elements from existing benchmarking efforts in the Big Data space (such as YCSB, TPC-xHS, GridMix, PigMix, HiBench, Big Data Benchmark, and TPC-DS). Intel and Cloudera, along with other industry partners, are working to define and implement extensions to BigBench 1.0. (A TPC proposal for BigBench 2.0 is in the works.)

BigBench Overview

Apache Hive on Apache Spark: The First Demo

The community effort to make Apache Spark an execution engine for Apache Hive is making solid progress.

Apache Spark is quickly becoming the programmatic successor to MapReduce for data processing on Apache Hadoop. Over the course of its short history, it has become one of the most popular projects in the Hadoop ecosystem, and is now supported by multiple industry vendors—ensuring its status as an emerging standard.

Guidelines for Installing CDH Packages on Unsupported Operating Systems

Installing CDH on newer unsupported operating systems (such as Ubuntu 13.04 and later) can lead to conflicts. These guidelines will help you avoid them.

Some of the more recently released operating systems that bundle portions of the Apache Hadoop stack in their respective distro repositories can conflict with software from Cloudera repositories. Consequently, when you set up CDH for installation on such an OS, you may end up picking up packages with the same name from the OS’s distribution instead of Cloudera’s distribution. Package installation may succeed, but using the installed packages may lead to unforeseen errors. 

How Apache Sqoop 1.4.5 Improves Oracle Database/Apache Hadoop Integration

Thanks to Guy Harrison of Dell Inc. for the guest post below about time-tested performance optimizations for connecting Oracle Database with Apache Hadoop that are now available in Apache Sqoop 1.4.5 and later.

Back in 2009, I attended a presentation by a Cloudera employee named Aaron Kimball at the MySQL User Conference in which he unveiled a new tool for moving data from relational databases into Hadoop. This tool was to become, of course, the now very widely known and beloved Sqoop!

The Story of the Cloudera Engineering Hackathon (2014 Edition)

Cloudera’s culture is premised on innovation and teamwork, and there’s no better example of them in action than our internal hackathon.

Cloudera Engineering doubled-down on its “hackathon” tradition last week, with this year’s edition taking an around-the-clock approach thanks to the HQ building upgrade since the 2013 edition (just look at all that space!).

How Cerner Uses CDH with Apache Kafka

Our thanks to Micah Whitacre, a senior software architect on Cerner Corp.’s Big Data Platforms team, for the post below about Cerner’s use case for CDH + Apache Kafka. (Kafka integration with CDH is currently incubating in Cloudera Labs.)

Over the years, Cerner Corp., a leading Healthcare IT provider, has utilized several of the core technologies available in CDH, Cloudera’s software platform containing Apache Hadoop and related projects—including HDFS, Apache HBase, Apache Crunch, Apache Hive, and Apache Oozie. Building upon those technologies, we have been able to architect solutions to handle our diverse ingestion and processing requirements.

Where to Find Cloudera Tech Talks (Through End of 2014)

Find Cloudera tech talks in Seattle, Las Vegas, London, Madrid, Budapest, Barcelona, Washington DC, Toronto, and other cities through the end of 2014.

Below please find our regularly scheduled quarterly update about where to find tech talks by Cloudera employees—this time, for the remaining dates of 2014. Note that this list will be continually curated during the period; complete logistical information may not be available yet. And remember, many of these talks are in “free” venues (no cost of entry).

This Month in the Ecosystem (October 2014)

Welcome to our 14th edition of “This Month in the Ecosystem,” a digest of highlights from October 2014 (never intended to be comprehensive; for that, see the excellent Hadoop Weekly).

Flafka: Apache Flume Meets Apache Kafka for Event Processing

The new integration between Flume and Kafka offers sub-second-latency event processing without the need for dedicated infrastructure.

In this previous post you learned some Apache Kafka basics and explored a scenario for using Kafka in an online application. This post takes you a step further and highlights the integration of Kafka with Apache Hadoop, demonstrating both a basic ingestion capability as well as how different open-source components can be easily combined to create a near-real time stream processing workflow using Kafka, Apache Flume, and Hadoop. 

The Case for Flafka

NoSQL in a Hadoop World

The number of powerful data query tools in the Apache Hadoop ecosystem can be confusing, but understanding a few simple things about your needs usually makes the choice easy. 

Ah, the good old days. I recall vividly that in 2007, I was faced to store 1 billion XML documents and make them accessible as well as searchable. I had few choices on a given shoestring budget: build something one my own (it was the rage back then—and still is), use an existing open source database like PostgreSQL or MySQL, or try this thing that Google built successfully and that was now implemented in open source under the Apache umbrella: Hadoop.

How-to: Do Near-Real Time Sessionization with Spark Streaming and Apache Hadoop

This Spark Streaming use case is a great example of how near-real-time processing can be brought to Hadoop.

Spark Streaming is one of the most interesting components within the Apache Spark stack. With Spark Streaming, you can create data pipelines that process streamed data using the same API that you use for processing batch-loaded data. Furthermore, Spark Steaming’s “micro-batching” approach provides decent resiliency should a job fail for some reason.

Inside Cloudera Director

With Cloudera Director, cloud deployments of Apache Hadoop are now as enterprise-ready as on-premise ones. Here’s the technology behind it.

As part of the recent Cloudera Enterprise 5.2 release, we unveiled Cloudera Director, a new product that delivers enterprise-class, self-service interaction with Hadoop clusters in cloud environments. (Cloudera Director is free to download and use, but commercial support requires a Cloudera Enterprise subscription.) It provides a centralized administrative view for cloud deployments and lets end users provision and scale clusters themselves using automated, repeatable, managed processes. To summarize, the same enterprise-grade capabilities that are available with on-premise deployments are now also available for cloud deployments. (For an overview of and motivation for Cloudera Director, please check out this blog post.)

How-to: Write Apache Hadoop Applications on OpenShift with Kite SDK

The combination of OpenShift and Kite SDK turns out to be an effective one for developing and testing Apache Hadoop applications.

At Cloudera, our engineers develop a variety of applications on top of Hadoop to solve our own data needs (here and here). More recently, we’ve started to look at streamlining our development process by using a PaaS (Platform-as-a-Service) for some of these applications. Having single-click deployment and updates to consistent development environments lets us onboard new developers more quickly, and helps ensure that code is written and tested along patterns that will ensure high quality.

New in CDH 5.2: New Security App and More in Hue

Thanks to new improvements in Hue, CDH 5.2 offers the best GUI yet for using Hadoop.

CDH 5.2 includes important new usability functionality via Hue, the open source GUI that makes Apache Hadoop easy to use. In addition to shipping a brand-new app for managing security permissions, this release is particularly feature-packed, and is becoming a great complement to BI tools from Cloudera partners like Tableau, MicroStrategy, and Zoomdata because a more usable Hadoop translates into better BI overall across your organization! 

New in CDH 5.2: Impala Authentication with LDAP and Kerberos

Impala authentication can now be handled by a combination of LDAP and Kerberos. Here’s why, and how.

Impala, the open source analytic database for Apache Hadoop, supports authentication—the act of proving you are who you say you are—using both Kerberos and LDAP. Kerberos has been supported since release 1.0, LDAP support was added more recently, and with CDH 5.2, you can use both at the same time.

New in CDH 5.2: Apache Sentry Delegated GRANT and REVOKE

This new feature, jointly developed by Cloudera and Intel engineers, makes management of role-based security much easier in Apache Hive, Impala, and Hue.

Apache Sentry (incubating) provides centralized authorization for services and applications in the Apache Hadoop ecosystem, allowing administrators to set up granular, role-based protection on resources, and to review them in one place. Previously, Sentry only designated administrators to GRANT and REVOKE privileges on an authorizable object. In Apache Sentry 1.5.0 (shipping inside CDH 5.2), we have implemented a new feature (SENTRY-327) that allows admin users to delegate the GRANT privilege to other users using WITH GRANT OPTION. If a user has the GRANT OPTION privilege on a specific resource, the user can now grant the GRANT privilege to other users on the same resource. Apache Hive, Impala, and Hue have all been updated to take advantage of this new Sentry functionality.

New in CDH 5.2: More SQL Functionality and Compatibility for Impala 2.0

Impala 2.0 is the most SQL-complete/SQL-compatible release yet.

As we reported in the most recent roadmap update (“What’s Next for Impala: Focus on Advanced SQL Functionality”), more complete SQL functionality (and better SQL compatibility with other vendor extensions) is a major theme in Impala 2.0.

Introducing Cloudera Labs: An Open Look into Cloudera Engineering R&D

Cloudera Labs contains ecosystem innovations that one day may bring developers more functionality or productivity in CDH.

Since its inception, one of the defining characteristics of Apache Hadoop has been its ability to evolve/reinvent and thrive at the same time. For example, two years ago, nobody could have predicted that the formative MapReduce engine, one of the cornerstones of “original” Hadoop, would be marginalized or even replaced. Yet today, that appears to be happening via Apache Spark, with Hadoop becoming the stronger for it. Similarly, we’ve seen other relatively new components, like Impala, Apache Parquet (incubating), and Apache Sentry (also incubating), become widely adopted in relatively short order.

Cloudera Enterprise 5.2 is Released

Cloudera Enterprise 5.2 contains new functionality for security, cloud deployments, and real-time architectures, and support for the latest open source component releases and partner technologies.

We’re pleased to announce the release of Cloudera Enterprise 5.2 (comprising CDH 5.2, Cloudera Manager 5.2, Cloudera Director 1.0, and Cloudera Navigator 2.1).

How SQOOP-1272 Can Help You Move Big Data from Mainframe to Apache Hadoop

Thanks to M. Asokan, Chief Architect at Syncsort, for the guest post below.

Apache Sqoop provides a framework to move data between HDFS and relational databases in a parallel fashion using Hadoop’s MR framework. As Hadoop becomes more popular in enterprises, there is a growing need to move data from non-relational sources like mainframe datasets to Hadoop. Following are possible reasons for this:

Using Impala, Amazon EMR, and Tableau to Analyze and Visualize Data

Our thanks to AWS Solutions Architect Rahul Bhartia for allowing us to republish his post below.

Apache Hadoop provides a great ecosystem of tools for extracting value from data in various formats and sizes. Originally focused on large-batch processing with tools like MapReduce, Apache Pig, and Apache Hive, Hadoop now provides many tools for running interactive queries on your data, such as Impala, Drill, and Presto. This post shows you how to use Amazon Elastic MapReduce (Amazon EMR) to analyze a data set available on Amazon Simple Storage Service (Amazon S3) and then use Tableau with Impala to visualize the data.

The Definitive "Getting Started" Tutorial for Apache Hadoop + Your Own Demo Cluster

Using this new tutorial alongside Cloudera Live is now the fastest, easiest, and most hands-on way to get started with Hadoop.

At Cloudera, developer enablement is one of our most important objectives. One only has to look at examples from history (Java or SQL, for example) to know that knowledge fuels the ecosystem. That objective is what drives initiatives such as our community forums, the Cloudera QuickStart VM, and this blog itself.

This Month in the Ecosystem (September 2014)

Welcome to our 13th edition of “This Month in the Ecosystem,” a digest of highlights from September 2014 (never intended to be comprehensive; for that, see the excellent Hadoop Weekly).

Here’s Your Getting Started with Impala Book

Getting Started with Impala (now in early release)—another book in the Hadoop ecosystem books canon—is indispensable for people who want to get familiar with Impala, the open source MPP query engine for Apache Hadoop. We spoke with its author, Impala docs writer John Russell, about the book’s origin and mission.

Why did you decide to write this book?

Secrets of Cloudera Support: Using OpenStack to Shorten Time-to-Resolution

Automating the creation of short-lived clusters for testing purposes frees our support engineers to spend more time on customer issues.

The first step for any support engineer is often to replicate the customer’s environment in order to identify the problem or issue. Given the complexity of Cloudera customer environments, reproducing a specific issue is often quite difficult, as a customer’s problem might only surface in an environment with specific versions of Cloudera Enterprise (CDH + Cloudera Manager), configuration settings, certain number of nodes, or the structure of the dataset itself. Even with Cloudera Manager’s awesome setup wizards, setting up Apache Hadoop can be quite time consuming, as the software was never designed with ephemeral clusters in mind.

New Benchmarks for SQL-on-Hadoop: Impala 1.4 Widens the Performance Gap

With 1.4, Impala’s performance lead over the SQL-on-Hadoop ecosystem gets wider, especially under multi-user load.

As noted in our recent post about the Impala 2.x roadmap (“What’s Next for Impala: Focus on Advanced SQL Functionality”), Impala’s ecosystem momentum continues to accelerate, with nearly 1 million downloads since the GA of 1.0, deployment by most of Cloudera’s enterprise data hub customers, and adoption by MapR, Amazon, and Oracle as a shipping product. Furthermore, in the past few months, independent sources such as IBM Research have confirmed that “Impala’s database-like architecture provides significant performance gains, compared to Hive’s MapReduce- or Tez-based runtime.”

Community Meetups during Strata + Hadoop World 2014

The meetup opportunities during the conference week are more expansive than ever — spanning Impala, Spark, HBase, Kafka, and more.

Strata + Hadoop World 2014 is a kaleidoscope of experiences for attendees, and those experiences aren’t contained within the conference center’s walls. For example, the meetups that occur during the conf week (which is concurrent with NYC DataWeek) are a virtual track for developers — and with Strata + Hadoop World being bigger than ever, so is the scope of that track.

How Impala Supports Mixed Workloads in Multi-User Environments

Our thanks to Melanie Imhof, Jonas Looser, Thierry Musy, and Kurt Stockinger of the Zurich University of Applied Science in Switzerland for the post below about their research into the query performance of Impala for mixed workloads.

Recently, we were approached by an industry partner to research and create a blueprint for a new Big Data, near real-time, query processing architecture that would replace its current architecture based on a popular open source database system.

How-to: Install CDH on Mac OSX 10.9 Mavericks

This overview will cover the basic tarball setup for your Mac.

If you’re an engineer building applications on CDH and becoming familiar with all the rich features for designing the next big solution, it becomes essential to have a native Mac OSX install. Sure, you may argue that your MBP with its four-core, hyper-threaded i7, SSD, 16GB of DDR3 memory are sufficient for spinning up a VM, and in most instances — such as using a VM for a quick demo — you’re right.  However, when experimenting with a slightly heavier workload that is a bit more resource intensive, you’ll want to explore a native install.

Apache Kafka for Beginners

When used in the right way and for the right use case, Kafka has unique attributes that make it a highly attractive option for data integration.

Apache Kafka is creating a lot of buzz these days. While LinkedIn, where Kafka was founded, is the most well known user, there are many companies successfully using this technology.

Getting Started with Big Data Architecture

What does a “Big Data engineer” do, and what does “Big Data architecture” look like? In this post, you’ll get answers to both questions.

Apache Hadoop has come a long way in its relatively short lifespan. From its beginnings as a reliable storage pool with integrated batch processing using the scalable, parallelizable (though inherently sequential) MapReduce framework, we have witnessed the recent additions of real-time (interactive) components like Impala for interactive SQL queries and integration with Apache Solr as a search engine for free-form text exploration.

The Early Release Books Keep Coming: This Time, Hadoop Security

Hadoop Security is the latest book from Cloudera engineers in the Hadoop ecosystem books canon.

We are thrilled to announce the availability of the early release of Hadoop Security, a new book about security in the Apache Hadoop ecosystem published by O’Reilly Media. The early release contains two chapters on System Architecture and Securing Data Ingest and is available in O’Reilly’s catalog and in Safari Books.

Newer Posts Older Posts