Cloudera Engineering Blog · Search Posts

Email Indexing Using Cloudera Search

Why would any company be interested in searching through its vast trove of email? A better question is: Why wouldn’t everybody be interested? 

Email has become the most widespread method of communication we have, so there is much value to be extracted by making all emails searchable and readily available for further analysis. Some common use cases that involve email analysis are fraud detection, customer sentiment and churn, lawsuit prevention, and that’s just the tip of the iceberg. Each and every company can extract tremendous value based on its own business needs. 

This Month in the Ecosystem (August 2013)

Welcome to our second edition of “This Month in the Ecosystem.” (See the inaugural edition here.) Although August was not as busy as July, there are some very notable highlights to report.

Cloudera Search is Now Generally Available

After three months of public beta, and months of private beta before that, Cloudera Search is now generally available. At this milestone, Cloudera has contributed its innovations and IP around the integration of Apache Solr and Apache Lucene with CDH back to the respective upstream projects. The GA of Cloudera Search also signifies the completion of a vast amount of hardening, integration, simplification, and packaging work.

Features of Cloudera Search 1.0 include:

How-to: Install Cloudera Manager and Cloudera Search with Ansible

The following guest post is re-published here courtesy of Gerd König, a System Engineer with YMC AG. Thanks, Gerd!

Cloudera Manager is a great tool to orchestrate your CDH-based Apache Hadoop cluster. You can use it from cluster installation, deploying configurations, restarting daemons to monitoring each cluster component. Starting with version 4.6, the manager supports the integration of Cloudera Search, which is currently in Beta state. In this post I’ll show you the required steps to set up a Hadoop cluster via Cloudera Manager and how to integrate Cloudera Search.

Introducing Morphlines: The Easy Way to Build and Integrate ETL Apps for Hadoop

This post is the first in a series of blog posts about Cloudera Morphlines, a new command-based framework that simplifies data preparation for Apache Hadoop workloads. To check it out or help contribute, you can find the code here.

Cloudera Morphlines is a new open source framework that reduces the time and effort necessary to integrate, build, and change Hadoop processing applications that extract, transform, and load data into Apache Solr, Apache HBase, HDFS, enterprise data warehouses, or analytic online dashboards. If you want to integrate, build, or facilitate transformation pipelines without programming and without substantial MapReduce skills, and get the job done with a minimum amount of fuss and support costs, this post gets you started.

The Blur Project: Marrying Hadoop with Lucene

Doug Cutting’s recent post about Cloudera Search included a hat-tip to Aaron McCurry, founder of the Blur project, for inspiring some of its design principles. We thought you would be interested in hearing more about Blur (which is mentored by Doug and Cloudera’s Patrick Hunt) from Aaron himself – thanks, Aaron, for the guest post below!

Blur is an Apache Incubator project that provides distributed search functionality on top of Apache Hadoop, Apache Lucene, Apache ZooKeeper, and Apache Thrift. When I started building Blur three years ago, there wasn’t a search solution that had a solid integration with the Hadoop ecosystem. Our initial needs were to be able to index our data using MapReduce, store indexes in HDFS, and serve those indexes from clusters of commodity servers while remaining fault tolerant. Blur was built specifically for Hadoop — taking scalability, redundancy, and performance into consideration from the very start — while leveraging all the great features that already exist in the Hadoop stack.

Hadoop for Everyone: Inside Cloudera Search

CDH, Cloudera’s 100% open source distribution of Apache Hadoop and related projects, has successfully enabled Big Data processing for many years. The typical approach is to ingest a large set of a wide variety of data into HDFS or Apache HBase for cost-efficient storage and flexible, scalable processing. Over time, various tools to allow for easier access have emerged — so you can now interact with Hadoop through various programming methods and the very familiar structured query capabilities of SQL.

However, many users with less interest in programmatic interaction have been shut out of the value that Hadoop creates from Big Data. And teams trying to achieve more innovative processing struggle with a time-efficient way to interact with, and explore, the data in Hadoop or HBase.

Demo: The New Search App in Hue 2.4

In version 2.4 of Hue, the open source Web UI that makes Apache Hadoop easier to use, a new app was added in addition to more than 150 fixes: Search!

Using this app, which is based on Apache Solr, you can now search across Hadoop data just like you would do keyword searches with Google or Yahoo! In addition, a wizard lets you tweak the result snippets and tailors the search experience to your needs.

QuickStart VM: Now with Real-Time Big Data

For years, Cloudera has provided virtual machines that give you a working Apache Hadoop environment out-of-the-box. It’s the quickest way to learn and experiment with Hadoop right from your desktop.

We’re constantly updating and improving the QuickStart VM, and in the latest release there are two of Cloudera’s new products that give you easier and faster access to your data: Cloudera Search and Cloudera Impala. We’ve also added corresponding applications to Hue – an open source web-based interface for Hadoop, and the easiest way to interact with your data.

Customer Spotlight: Embracing Big Data Innovations at The Cloudera Forum

Earlier this week, we hosted The Cloudera Forum to reveal Cloudera’s “Unaccept the Status Quo” vision and to announce the public beta launch of Cloudera Search. The event featured a panel discussion between representatives from four companies that are embracing the latest big data innovations, moderated by our own CEO Mike Olson. Those are the companies I’d like to highlight in this week’s spotlight, for obvious reasons. The panelists were… (drumroll, please):

Newer Posts Older Posts