Author Archives: Jordan Volz

How-to: Automate Your sparklyr Environment with Cloudera Director

Categories: Cloudera Manager Data Science Hadoop How-to Ops and DevOps Spark

Since the launch of sparklyr, working with Apache Spark in Apache Hadoop has become much easier for R users. sparklyr contains a dplyr interface into Spark and allows users to leverage crucial machine learning algorithms from Spark MLlib and H2O Sparkling Water. This greatly reduces the barrier of entry for R users in adopting Spark as a tool for big data and should go a long way in enabling R workloads to migrate to Hadoop.

Read more

How-to: Ingest Email into Apache Hadoop in Real Time for Analysis

Categories: Data Ingestion Flume Hadoop Kafka Search Spark Use Case

Apache Hadoop is a proven platform for long-term storage and archiving of structured and unstructured data. Related ecosystem tools, such as Apache Flume and Apache Sqoop, allow users to easily ingest structured and semi-structured data without requiring the creation of custom code. Unstructured data, however, is a more challenging subset of data that typically lends itself to batch-ingestion methods. Although such methods are suitable for many use cases,

Read more

How-to: Analyze Fantasy Sports with Apache Spark and SQL (Part 2: Data Exploration)

Categories: Hadoop Spark Use Case

Learn how analyzing stats from professional sports leagues is an instructive use case for data analytics using Apache Spark with SQL. Covered in this installment: data exploration with Apache Impala (incubating) and Hue.

In Part 1 of this series, I introduced the topic of using fantasy sports analytics as an instructive use case for exploring the Apache Hadoop ecosystem. In that installment, we focused on data processing by taking a collection of data from Basketball-Reference.com and enriching it with z-scores and normalized z-scores to analyze the relative value of NBA players.

Read more

How-to: Analyze Fantasy Sports using Apache Spark and SQL

Categories: Hive How-to Impala Spark Use Case

As part of the drumbeat for Spark Summit West in San Francisco (June 6-8),  learn how analyzing stats from professional sports leagues is an instructive use case for data analytics using Apache Spark with SQL.

In the United States, many diehard sports fans morph into amateur statisticians to get an edge over the competition in their fantasy sports leagues. Depending on one’s technical chops, this “edge” is usually no more sophisticated than simple spreadsheet analysis,

Read more