Author Archives: Aki Ariga

How to Distribute your R code with sparklyr and Cloudera Data Science Workbench

Categories: CDH How-to Spark

sparklyr is a great opportunity for R users to leverage the distributed computation power of Apache Spark without a lot of additional learning. sparklyr acts as the backend of dplyr so that R users can write almost the same code for both local and distributed calculation over Spark SQL.

 

Since sparklyr v0.6, we can run R code across our Spark cluster with spark_apply().

Read more

Create conda recipe to use C extended Python library on PySpark cluster with Cloudera Data Science Workbench

Categories: CDH Data Science How-to Spark

Cloudera Data Science Workbench provides data scientists with secure access to enterprise data with Python, R, and Scala. In the previous article, we introduced how to use your favorite Python libraries on an Apache Spark cluster with PySpark. In Python world, data scientists often want to use Python libraries, such as XGBoost, which includes C/C++ extension. This post shows how to solve this problem creating a conda recipe with C extension.

Read more

Use your favorite Python library on PySpark cluster with Cloudera Data Science Workbench

Categories: CDH Data Science How-to Spark

Cloudera Data Science Workbench provides freedom for data scientists. It gives them the flexibility to work with their favorite libraries using isolated environments with a container for each project.

In JVM world such as Java or Scala, using your favorite packages on a Spark cluster is easy. Each application manages preferred packages using fat JARs, and it brings independent environments with the Spark cluster. Many data scientists prefer Python to Scala for data science,

Read more

Analyzing US flight data on Amazon S3 with sparklyr and Apache Spark 2.0

Categories: CDH Data Science Hadoop Spark Use Case

We posted several blog posts about sparklyr (introduction, automation), which enables you to analyze big data leveraging Apache Spark seamlessly with R. sparklyr, developed by RStudio, is an R interface to Spark that allows users to use Spark as the backend for dplyr, which is the popular data manipulation package for R.

If you are interested in sparklyr, you can learn how to use it with the official document,

Read more